
Q3   Each J corresponds to a       –      Pareto frontier. Each frontier has a unique 

budget-optimal point, corresponding to an optimal UTD* and budget      .
Optimal UTD follows a power law wrt budget!

RL is sensitive to hyperparameters. How to set batch size and learning rate for large-scale runs?

To achieve performance level J, RL requires a combination of data       and compute     . What is their tradeoff?

I have a requirement on the total budget, a combination                                     of data and compute. How should I 

configure the algorithm to maximize performance given this budget?
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Q2   With the right hyperparameters, data and compute are predictable 

functions of UTD! Data follows a power law across environments/algorithms.
Tradeoff along the data-compute Pareto frontier parameterized by UTD.
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Motivation and Problem Statement

DeepMind Control / BRO Learning rate    High UTD ratios and high learning rates both lead to plasticity loss. 

Decrease learning rate to counteract high parameter norm.

Batch size    Overfitting = (TD error on newest data) – (TD error on uniformly sampled data).

High updates-to-data ratio (UTD) and batch size both increase overfitting, since they train on 
the average data point more. Decrease batch size with higher UTD to counteract overfitting.

DeepMind Control / BRO IsaacGym / PQL
Summary and Takeaways
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OpenAI Gym / SAC

• Batch size, learning rate 
predictable from UTD; 
outperforms constant.

• UTD controls the tradeoff 
between data, compute.

• Optimal UTD follows a 
power law wrt budget.

OpenAI Gym / SAC

Q1:

Q2:

Q3:

Q1: Setting Hyperparameters

DeepMind Control / BRO

Q2, Q3: Configuring Algorithm


