Reasoning and Tools for Human-Level Forecasting

Elvis Hsieh*, Preston Fu*, Jonathan Chen* (equal contribution) **UC** Berkeley

Why LLM forecasting?

Large language models (LLMs) trained on web-scale datasets **are**:

- Good at memorizing large amounts of training data, even if only present in a few examples.
- Often evaluated on tasks such as question-answering, which demonstrate world knowledge but not reasoning capabilities.

With RTF, LLMs can be:

- Good at reasoning in live settings, when presented with real-time data and a basis for truth.
- Successful in difficult, reasoning-intensive decision-making tasks like forecasting.

We propose a **zero-shot prompting** mechanism achieving human-level forecasting performance.

Background

- Naively prompting LLMs for forecasting tasks performs worse than humans (prediction markets are good data source). [1]
- Following the **wisdom of crowds effect** of humans, large aggregates (size up to 36) of LLM predictions work better than individual LLMs. [2]
- **Reasoning-and-acting** (ReAct), unlike chain-of-thought, continuously refines responses with retrieved information. [3]

We show that ReAct-based frameworks are suitable for forecasting tasks.

Method

Econ/business Dataset Politics/gov 6.5% Science/tech 8.0% 33.8% Arts/recreation 201 questions from Sports Manifold Markets. 14.4% Security/defense Sample question: Healthcare/biology 14.4% 16.9% "Will ETH close above Environment/energy \$3700 on April 30, 2024?" Social sciences

Experiments

Method	Brier ↓	Acc % ↑	Std \downarrow
Crowd	0.172	73.8	
RTF Median of 3 RTF Mean of 3 RTF Sampled	0.169 0.170 0.180	72.4 73.9 71.6	0.092 0.092
Halawi et al. (2024) GPT-40	0.177	68.7	
GPT-40 Base LM Mean Base LM Median Llama 3 GPT-3.5 GPT-4	$\begin{array}{c} 0.210 \\ 0.218 \\ 0.228 \\ 0.256 \\ 0.261 \\ 0.265 \end{array}$	65.5 62.9 61.3 56.2 53.5 54.8	0.150 0.150

- A small ensemble of hierarchical agents:
- High-level agents act as planners, handling abstract logic and forecasting principles to aggregate information.
- Low-level agents generate inputs to tools (Google, Python), execute the actions, and report observations.
- Delegating reasoning and API calling to specialized agents enhances efficiency, conserves tokens, and allows for more complex operations.

Brier score: $BS = \frac{1}{n} \sum_{i=1}^{n} (f_i - o_i)^2$ (how accurate are forecasts?)

Method	Calibration Index \downarrow
Crowd	0.0101
ReAct Mean	0.0129
ReAct Median	0.0137
ReAct	0.0164
GPT-40	0.0194
GPT-4	0.0290
GPT-3.5	0.0298
Llama 3	0.0301

Calibration index: $CI = \frac{1}{N} \sum_{k=1}^{K} N_k (f_k - o_k)^2$ (how close are predictions to binned outcome frequencies?)

- RTF is simple and scalable, and can achieve good performance on different data and LLMs. No need for fine-tuning!

Analysis

- Small ensembles of highly accurate agents are sufficiently good. One RTF agent is better than an aggregate of low-accuracy agents!
- Base LLMs produce higher-variance outputs compared to RTF. Ensemble performance is limited by base LLM reasoning.
- Qualitative assessment: direct prompting produces cascading errors (most recent tokens matter more), while RTF yields more cohesive, human-like reasoning trajectories.

References

[1] A. Zou, et al. Forecasting Future World Events with Neural Networks. Preprint, arXiv:2206.15474.

[2] P. Schoenegger, et al. Wisdom of the silicon crowd: Llm ensemble prediction capabilities rival human crowd accuracy, 2024.

[3] S. Yao, et al. React: Synergizing reasoning and acting in language models

Paper